Topic # 10

Structuring System Requirements: Conceptual Data Modeling
Objectives

1. Entities: Data objects
2. Entities: Class objects
3. Unary, Binary, and Ternary relationships
4. Cardinality
5. Entity-Relationship (E-R) diagrams
Conceptual Data Modeling

• **Conceptual Data Model** is a detailed model that
 1) captures the **overall structure of organizational data and data flow**, and
 2) is **independent of any database management system** or other implementation considerations.

• Some systems developers believe **that a data model is one of the most important parts of the statement of information system requirements** for three reasons:
 1) completely representing data requirements is crucial for the design of databases, programs, computer screens, and printed reports—critical elements of any information system;
 2) data rather than processes are the most complex aspects of many information systems, and hence must be modeled with clarity;
 3) data characteristics and natural structures (as opposed to processing requirements) are reasonably permanent, so designing information systems based on data yields more stable systems with longer lives (and less maintenance).

Example: Online Course – Data; BlackBoard or Sakai LMS - Rules
Entities: Data and Class Objects
A data object contains a set of attributes that act as an aspect, quality, characteristic, or descriptor of the object.

Class Object Name: Student

Class Object Attributes:
- first_name
- last_name
- year_of_admission
- major
- courses_taken
- credits_obtained
- home_address
- phone_number
- email_address
- etc.

Class Object Functions/Methods:
- register for a course
- pay for a course
- get individual course schedule
- etc.

The object encapsulates both data and the logical procedures required to manipulate the data.
Data Objects: examples

- external entities: (printer, user, sensor)
- things: (e.g., reports, displays, signals)
- occurrences or events: (e.g., interrupt, alarm)
- roles: (e.g., manager, engineer, salesperson)
- organizational units: (e.g., division, team)
- places: (e.g., manufacturing floor)
- data structures: (e.g., employee record, file, etc.)
Class Diagram

• Represent: 1) objects system manipulates
2) operations applied to objects, and
3) collaborations occurring between classes

• Elements of class model include:
 1) data objects
 2) attributes
 3) operations
 4) collaboration diagrams, etc.

• Examine the problem statement and try to find nouns that fit the following
categories and produce or consume information (i.e. grammatical parse)
 – External entities (systems, devices, people)
 – Things (e.g. reports, displays, letters, signals)
 – Events occurring during system operation
 – Roles (e.g. manager, engineer, salesperson)
 – Organizational units (e.g. division, group, team)
 – Places
 – Structures (e.g. sensors, vehicles, computers)
Class Diagram

Class Objects

Attributes
Operations

Associations: enrolled, on waiting list, etc.

Source: http://www.agilemodeling.com/artifacts/classDiagram.htm
Class Diagrams:
examples on Bradley University campus
Relations.
ERD Diagrams.
Entity-Relationship (E-R) Modeling

• Entity-Relationship (E-R) Diagram
 – A detailed, logical representation of the entities, associations and data elements for an organization or business

• Notation uses 3 main constructs (see corresponding graphic symbols below):
 – Data entities
 – Relationships
 – Attributes
Degree of Relationship

- Degree: number of entity types that participate in a relationship
- Three cases
 - Unary: between two instances of one entity type
 - Binary: between the instances of two entity types
 - Ternary: among the instances of three entity types
In-classroom practice:

Bradley University campus: examples of 1) 1-to-1, 1-to-many, and many-to-many relationships
Cardinality

- **Cardinality**: the number of instances of entity B that can or must be associated with each instance of entity A

- **Minimum Cardinality**
 - The minimum number of instances of entity B that may be associated with each instance of entity A

- **Maximum Cardinality**
 - The maximum number of instances of entity B that may be associated with each instance of entity A

- **Mandatory vs. Optional Cardinalities**
 - Specifies whether an instance must exist or can be absent in the relationship
An Example of Conceptual Data Model Diagram
Examples of Unary Relationship (Bradley University campus)
Example 1:
Mandatory Cardinalities

Example 2:
One optional, One Mandatory Cardinalities
ERD (E-R Diagram): university-related examples
Topic # 10

Structuring System Requirements: Conceptual Data Modeling

Additional information: UML
Object Modeling Using Class Diagrams

UML Language

• Object-oriented approach

• Features
 – Objects and classes
 – Encapsulation of attributes and operations
 – Polymorphism
 – Inheritance
UML associations are analogous to E-R relationships.

UML multiplicities are analogous to E-R cardinalities.

Examples of association relationships of different degrees
An association with its own attributes, operations, or relationships

UML association classes are analogous to E-R associative entities.
Example of generalization, inheritance and constraints

Generalization and inheritance implemented via superclass/subclasses in UML, supertypes/subtypes in E-R
Final E-R Diagram for Hoosier Burger's Inventory Control System